Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills.

نویسندگان

  • Nini Skovgaard
  • Kenneth R Olson
چکیده

Hypoxic pulmonary vasoconstriction (HPV) is an adaptive response that diverts pulmonary blood flow from poorly ventilated and hypoxic areas of the lung to more well-ventilated parts. This response is important for the local matching of blood perfusion to ventilation and improves pulmonary gas exchange efficiency. HPV is an ancient and highly conserved response, expressed in the respiratory organs of all vertebrates, including lungs of mammals, birds, and reptiles; amphibian skin; and fish gills. The mechanism underlying HPV and how cells sense low Po(2) remains elusive. In perfused trout gills (Oncorhynchus mykiss), acute hypoxia, as well as H(2)S, caused an initial and transient constriction of the vasculature. Inhibition of the enzymes cystathionine-β-synthase and cystathionine-γ-lyase, which blocks H(2)S production, abolished the hypoxic response. Individually blocking the four complexes in the electron transport chain abolished both the hypoxic and the H(2)S-mediated constriction. Glutathione, an antioxidant and scavenger of superoxide, attenuated the vasoconstriction in response to hypoxia and H(2)S. Furthermore, diethyldithiocarbamate, an inhibitor of superoxide dismutase, attenuated the hypoxic and H(2)S constriction. This strongly suggests that H(2)S mediates the hypoxic vasoconstriction in trout gills. H(2)S may stimulate the mitochondrial production of superoxide, which is then converted to hydrogen peroxide (H(2)O(2)). Thus, H(2)O(2) may act as the "downstream" signaling molecule in hypoxic vasoconstriction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Editorial focus: oxygen sensors and mediators of the contractile responses of smooth muscle to hypoxia. Focus on: "Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills".

SMOOTH MUSCLE CELLS (SMCS) in vascular and other tissues reversibly change their tone in response to acute variations in oxygen tension, and this results in important physiological and pathophysiological responses of the organ or system. The best studied example includes the changes in blood vessel diameter in response to decreases in oxygen tension (hypoxia). Thus, in response to tissue hypoxi...

متن کامل

Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors.

O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquat...

متن کامل

The Interaction between Trolox and 4,4’-diisothiocyanatostilbene-2,2’-disulfonic Acid on Hypoxic Pulmonary Vasoconstriction in the Isolated Rabbit Lung

Background: The mechanism of hypoxic pulmonary vasoconstriction (HPV) is still debatable. It has been proposed that reactive oxygen species (ROS) might be involved in HPV. However, there is no special transporter for superoxide anion in the cell membrane and it may release from the cells via anion exchanger. Therefore, the aim of this study was to investigate the interaction of ROS and anion ex...

متن کامل

Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.

Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinar...

متن کامل

Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling.

Hydrogen sulfide (H(2)S) is rapidly emerging as a biologically significant signaling molecule. Studies published before 2000 report low or undetectable H(2)S (usually as total sulfide) levels in blood or plasma, whereas recent work has reported sulfide concentrations between 10 and 300 microM, suggesting it acts as a circulating signal. In the first series of experiments, we used a recently dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 303 5  شماره 

صفحات  -

تاریخ انتشار 2012